If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+0.6X+0.01=0
a = 1; b = 0.6; c = +0.01;
Δ = b2-4ac
Δ = 0.62-4·1·0.01
Δ = 0.32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.6)-\sqrt{0.32}}{2*1}=\frac{-0.6-\sqrt{0.32}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.6)+\sqrt{0.32}}{2*1}=\frac{-0.6+\sqrt{0.32}}{2} $
| 5–5x=15 | | x^2-5x=-3900 | | 5–5x=15x= | | v-21/8=12 | | 3*10x=72 | | X^2+0.06x+0.01=0 | | 2•x+10=2 | | -5y-7+4y+5= | | 3x+7=4=5x | | 4n−–5=13 | | -7m=-6 | | y,3y+9=18 | | -3(x-6)=-5x-24 | | (3q-40)=(2q+11) | | -5(x-9)-19=46 | | 2x+12=4x-26 | | x−3÷2=11 | | x+2x+3x+4x=10x | | −18−z=13z+10 | | 14z−11,5z=6,427 | | 14z−11,5z=6,4275 | | –54–8x=–2x | | 2.5/10=x/ | | 6=1/2z* | | -(c-5)=-20 | | y=2^31 | | 25^(2x-3)=5x(125^3x) | | 3y-5y+10=6 | | 9-2a=33+a | | 2w+22=-6(w+7) | | 3t+4=5-2t | | 8y+6=6y-8 |